Start main page content

Accelerating high-tech training

- Wits University

Wits students contribute to the upgrade of the high-tech software and hardware at the CERN ATLAS detector.

In 2012, the world was astonished by the announcement of the discovery of the Higgs boson at the Centre for Nuclear Reseach (CERN) in Switzerland. That announcement completed physicists understanding of what we know of the part of our world that we can see and feel????????????????, namely normal matter.

The discovery of the Higgs boson, however, inspired the worlds’ physicists into a whole new world of study, searching for the answers to the mysteries of the things in our universe that we cannot see.

“Normal matter, in other words, the things that we can see and feel around us comprises only about 4% of what is actually in the universe. While we know that there is a lot of matter and energy out there we do not really know what it is and how it is related to the known matter.” says Professor Bruce Mellado, the National Contact Physicist of South Africa at the ATLAS experiment at CERN from the School of Physics at the University of the Witwatersrand.

Dingane HlakuluThe Department of Science and Technology funds the South Africa CERN (SA-CERN) consortium. This avenue is essential for South African students and researchers to access this leading global research infrastructure.

Wits is the single largest contributor from South Africa to CERN. This includes theoreticians and experimentalists together with a  group of 35 students from a wide variety of historical and financial backgrounds that are highly involved in the search for new bosons. These students from Wits University spend significant amount of time at CERN, where some of them play an active role in the upcoming upgrading of the ATLAS particle detectors, that is situated in the Large Hadron Collider (LHC). The LHC will be upgraded in 2023-2024 to increase its sensitivity in order to enhance the potential for new discoveries.

“The LHC is the largest particle accelerator in the world, and it is used to accelerate two high energy particle beams in opposite directions in a circular route, and set them on a collision course with each other,” says Ntabiseng Lekalakala, an M.Sc. student from Wits University, who is now based at CERN.

“By colliding the particles against each other at speeds close to the speed of light, we physically break up these particles to see what they are made of.”

These collissions happen at a rate of one every 25 nanoseconds (a nanosecond is one thousand-millionth of a second).

Dingane Hlaluku, a student at the Wits School of Physics, is working on the software upgrade of the detector. He completed his Masters in Physics at Wits in 2017 and has developed a keen interest in software engineering of largely distributed systems. In October 2017, he was invited to deliver a plenary presentation on the status of the detector upgrades to the Tile Calorimeter of the ATLAS experiment – which included some of the world’s top physicists in High Energy Physics.

Joyful Mdhluli“Dingane giving a plenary presentation summarising the upgrade activities of the Tile Calorimeter of the ATLAS detector was a honour to us all,” says Mellado.

One of the biggest challenges at the ATLAS experiment is to sift through the huge amounts of big data that the experiment delivers, and to only capture the relevant data. This is where Dingane’s software update plays a crucial role.

After the upgrade, the readout electronics will need to co